目 次

			ページ
1	適用範囲		1
2	引用規格 ······		1
3	用語及び定義		2
3.1	20 時間率放電電流	, I_{20} ·····	2
3.2	20 時間率定格容量	, C_{20} ·····	2
3.3			
3.4	リプル電流		2
4	温度条件による蓄電	池の寿命特性変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
5		計······	
5.1			
5.2		りの発熱量	
5.3	蓄電池の放熱量 …		5
5.4	キュービクルの放射	熟係数	7
5.5	蓄電池とキュービ	フルとの合成放熱係数	7
6	熱収支計算······		7
7	熱収支の計算に必要	な条件	8
8	熱収支の計算例		8
8.1	12P60 型蓄電池(6	セル, 6 Ah)を 17 個収納するキュービクルの放熟設計を行う場合	8
8.2	熱逸走を引き起こ	さない条件を求めるための簡易法	9
9	キュービクルの熱設	計における留意事項	11
10	蓄電池の型式・電圧	E • 容量 • 外形寸法 ······	11
解詞	兑		14